Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
J Biomater Appl ; : 8853282241248779, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708775

ABSTRACT

OBJECTIVE: Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as "smart hydrogels") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries. METHOD: This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included "hydrogel" and "cartilage," covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language. RESULTS: A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects. CONCLUSION: Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.

2.
Nanomedicine ; : 102748, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663789

ABSTRACT

Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.

3.
J Extracell Vesicles ; 13(4): e12437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594787

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1ß both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Respiratory Distress Syndrome , Humans , Mice , Animals , Lipopolysaccharides , Extracellular Vesicles/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Macrophages/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , MicroRNAs/metabolism
4.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591083

ABSTRACT

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

5.
J Diabetes Res ; 2024: 9990304, 2024.
Article in English | MEDLINE | ID: mdl-38523631

ABSTRACT

Background: Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. Purpose: The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. Materials and Methods: We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. Results: The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. Conclusion: JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Iron Overload , Animals , Mice , Diabetic Nephropathies/drug therapy , Disease Models, Animal , Inflammation , Iron Overload/complications , Iron Overload/drug therapy
6.
Opt Lett ; 49(5): 1141-1144, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426958

ABSTRACT

Upconversion nanocomposites with multiple light-emitting centers have attracted great attention as functional materials, but their low efficiency limits their further applications. Herein, a novel, to the best of our knowledge, system for nanocomposites consisting of upconversion nanoparticles (UCNPs) and perovskite quantum dots (PeQDs) assembled with Ag nanoparticles (NPs) is proposed. Upconversion luminescence (UCL) operation from PeQDs is triggered by near-infrared (NIR) sensitization through Förster resonance energy transfer (FRET) and photon reabsorption (PR). Especially, the photoluminescence (PL) emission efficiency is found to be significantly enhanced due to the increased energy transfer efficiency and radiative decay rate in the UCNPs/CsPbBr3 nanocomposites. The results offer new opportunities to improve the UCL properties of perovskites and open new development in the fields of LED lighting, solar cells, biomedicine, and so on.

7.
Heliyon ; 10(1): e23505, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187284

ABSTRACT

Background: Epithelial cell adhesion molecule (EpCAM), a well-established marker for circulating tumor cells, plays a crucial role in the complex process of cancer metastasis. The primary objective of this investigation is to study EpCAM expression in pan-cancer and elucidate its significance in the context of kidney renal clear cell carcinoma (KIRC). Methods: Data obtained from the public database was harnessed for the comprehensive assessment of the EpCAM expression levels and prognostic and clinicopathological correlations in thirty-three types of cancer. EpCAM was validated in our own KIRC sequencing and immunohistochemical cohorts. Subsequently, an in-depth exploration was conducted to scrutinize the interrelationship between EpCAM and various facets, including immune cells, immune checkpoints, and chemotherapy drugs. We employed Cox regression analysis to identify prognostic immunomodulators associated with EpCAM, which were subsequently utilized in the development of a prognostic model. The model was validated in our own clinical cohort and public datasets, and compared with 137 published models. The role of EpCAM in KIRC was explored by biological function experiments in vitro. Results: While EpCAM exhibited pronounced overexpression across a wide spectrum of cancer types, a notable reduction was observed in KIRC tissues. As grade increased, EpCAM expression decreased. EpCAM expression decreased in patients without metastasis. EpCAM mRNA and protein levels were used as independent, favorable prognostic factors in patients with KIRC in our own cohort. The expression of EpCAM exhibited strong associations with immune-related pathways, demonstrating an inverse correlation with the majority of immune cell types. Immune checkpoint inhibitors exert better therapeutic effects on patients with low EpCAM expression. In addition, EpCAM can be used as a drug resistance indicator and guide the clinical medication of patients with KIRC. A robust model, which had good predictive accuracy and applicability, showed significant superiority over other models. Importantly, EpCAM played the dual roles of promoting proliferation and resisting metastasis in KIRC. Conclusion: In the context of KIRC, EpCAM assumes a surprising dual role, where it not only facilitates cell proliferation but also exerts resistance against the metastatic process. EpCAM serves as a standalone prognostic marker for patients with KIRC, and related models can also effectively predict prognosis. These discoveries offer novel perspectives on the functional significance of EpCAM in the context of KIRC.

9.
Gene ; 893: 147913, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37866663

ABSTRACT

The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.


Subject(s)
MicroRNAs , Turtles , Animals , Male , Female , Turtles/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Gonads , Sex Differentiation/genetics , Chromatin
10.
Article in English | MEDLINE | ID: mdl-38072245

ABSTRACT

OBJECTIVE: Pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur and share dysfunctions in affective and cognitive domains. As the neural substrates underlying their overlapping and dissociable symptomatology have not been well delineated, a meta-analysis of whole-brain voxel-based morphometry studies in PBD and ADHD was conducted. METHOD: A systematic literature search was performed in PubMed, Web of Science, and Embase. The seed-based d mapping toolbox was used to identify altered clusters of PBD or ADHD and obtain their conjunctive and comparative abnormalities. Suprathreshold patterns were subjected to large-scale network analysis to identify affected brain networks. RESULTS: The search revealed 10 PBD studies (268 patients) and 32 ADHD studies (1,333 patients). Decreased gray matter volumes in the right insula and anterior cingulate cortex relative to typically developing individuals were conjunctive in PBD and ADHD. Reduced volumes in the right inferior frontal gyrus, left orbitofrontal cortex, and hippocampus were more substantial in PBD, while decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus were more pronounced in ADHD. Neurodevelopmental effects modulated patterns of the left hippocampus in PBD and those of the left inferior frontal gyrus in ADHD. CONCLUSION: These findings suggest that PBD and ADHD are characterized by both common and distinct patterns of gray matter volume alterations. Their overlapping abnormalities may represent a transdiagnostic problem of attention and emotion regulation shared by PBD and ADHD, whereas the disorder-differentiating substrates may contribute to the relative differences in cognitive and affective features that define the 2 disorders. STUDY PREREGISTRATION INFORMATION: Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder in Children/Adolescents: An Overlapping Meta-analysis; https://osf.io/trg4m.

11.
Biofabrication ; 16(1)2023 10 18.
Article in English | MEDLINE | ID: mdl-37797606

ABSTRACT

Untreated osteochondral defects will develop into osteoarthritis, affecting patients' quality of life. Since articular cartilage and subchondral bone exhibit distinct biological characteristics, repairing osteochondral defects remains a major challenge. Previous studies have tried to fabricate multilayer scaffolds with traditional methods or 3D printing technology. However, the efficacy is unsatisfactory because of poor control over internal structures or a lack of integrity between adjacent layers, severely compromising repair outcomes. Therefore, there is a need for a biomimetic scaffold that can simultaneously boost osteochondral defect regeneration in both structure and function. Herein, an integrated bilayer scaffold with precisely controlled structures is successfully 3D-printed in one step via digital light processing (DLP) technology. The upper layer has both 'lotus- and radial-' distribution pores, and the bottom layer has 'lotus-' pores to guide and facilitate the migration of chondrocytes and bone marrow mesenchymal stem cells, respectively, to the defect area. Tuning pore sizes could modulate the mechanical properties of scaffolds easily. Results show that 3D-printed porous structures allow significantly more cells to infiltrate into the area of 'lotus- and radial-' distribution pores during cell migration assay, subcutaneous implantation, andin situtransplantation, which are essential for osteochondral repair. Transplantation of this 3D-printed bilayer scaffold exhibits a promising osteochondral repair effect in rabbits. Incorporation of Kartogenin into the upper layer of scaffolds further induces better cartilage formation. Combining small molecules/drugs and precisely size-controlled and layer-specific porous structure via DLP technology, this 3D-printed bilayer scaffold is expected to be a potential strategy for osteochondral regeneration.


Subject(s)
Cartilage, Articular , Tissue Scaffolds , Humans , Animals , Rabbits , Tissue Scaffolds/chemistry , Biomimetics , Quality of Life , Cell Movement , Printing, Three-Dimensional , Tissue Engineering/methods
12.
Sci Rep ; 13(1): 14595, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670039

ABSTRACT

SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Humans , Cell Line , Gelsolin , Risk Factors , Tumor Microenvironment , Membrane Proteins , Microfilament Proteins
13.
Front Immunol ; 14: 1192428, 2023.
Article in English | MEDLINE | ID: mdl-37600786

ABSTRACT

Background: Immunotherapy resistance has become a difficult point in treating kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune evasion. Currently, there is no effective signature to predict immunotherapy. Therefore, we use machine learning algorithms to construct a signature based on cytotoxic T lymphocyte evasion genes (CTLEGs) to predict the immunotherapy responses of patients, so as to screen patients effective for immunotherapy. Methods: In public data sets and our in-house cohort, we used 10 machine learning algorithms to screen the optimal model with 89 combinations under the cross-validation framework, and 101 published signatures were collected. The relationship between the CTLEG signature (CTLEGS) and clinical variables was analyzed. We analyzed the role of CTLES in other types of cancer by pan-cancer analysis. The immune cell infiltration and biological characteristics were evaluated. Moreover, the response to immunotherapy and drug sensitivity of different risk groups were investigated. The key gene closely related to the signature was identified by WGCNA. We also conducted cell functional experiments and clinical tissue validation of key gene. Results: In public data sets and our in-house cohort, the CTLEGS shows good prediction performance. The CTLEGS can be regard as an independent risk factor for KIRC. Compared with 101 published models, our signature shows considerable superiority. The high-risk group has abundant infiltration of immunosuppressive cells and high expression of T cell depletion markers, which are characterized by immunosuppressive phenotype, minimal benefit from immunotherapy, and resistance to sunitinib and sorafenib. The CTLEGS was also strongly correlated with immunity in pan-cancer. Immunohistochemistry verified that T cell depletion marker LAG3 is highly expressed in high-risk groups in the clinical in-house cohort. The key CTLEG STAT2 can promote the proliferation, migration and invasion of KIRC cell. Conclusions: CTLEGS can accurately predict the prognosis of patients and their response to immunotherapy. It can provide guidance for the precise treatment of KIRC and help clinicians identify patients who may benefit from immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , T-Lymphocytes, Cytotoxic , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Prognosis , Immunotherapy , CD3 Complex , Machine Learning , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney
14.
Genet Test Mol Biomarkers ; 27(8): 248-257, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37643326

ABSTRACT

Objective: There is currently no adequate treatment for osteosarcoma, a bone malignancy that poses a serious threat to adolescents and children. The dysregulation of long noncoding RNAs is associated with many cancers, including osteosarcoma. LINC00891 expression is aberrant in endometrial cancer, lung cancer, and thyroid cancer, and likely regulate the malignant behavior of cancer. However, the potential function and mechanisms of LINC00891 in osteosarcoma progression remain unclear. Materials and Methods: LINC00891, miR-27a-3p, and TET1 mRNA expression in osteosarcoma cells were analyzed using quantitative reverse transcription-polymerase chain reaction. CCK-8 and Transwell experiments were performed on osteosarcoma cells to investigate proliferation, migration, and invasion, respectively. Ten-eleven translocation 1 (TET1) protein was analyzed using western blotting. Luciferase experiment was performed to investigate the interactions between LINC00891 with miR-27a-3p, and miR-27a-3p with TET1. Results: LINC00891 expression was dramatically decreased in the five osteosarcoma cell lines examined, particularly in 143B and SaoS-2 cells. LINC00891 overexpression due to plasmid transfection sharply blocked the proliferation, migration, and invasion of osteosarcoma cells. Dual-luciferase reporter experiments found that LINC00891 sponges miR-27a-3p, and LINC00891 overexpression sharply decreases miR-27a-3p expression. Transfection with miR-27a-3p mimic accelerated the malignant behaviors in LINC00891 overexpressed-osteosarcoma cells. Moreover, TET1 was a novel targeted-gene of miR-27a-3p. TET1 protein was significantly impeded, whereas LINC00891 overexpression elevated TET1 mRNA and protein in osteosarcoma cells. MiR-27a-3p overexpression inhibited TET1 mRNA and protein in osteosarcoma cells. Conclusions: Our study verified that LINC00891 attenuates the proliferation and metastasis of osteosarcoma cells via the miR-27a-3p/TET1 axis. This study clarifies a new mechanism and therapeutic target for the development of osteosarcoma.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Adolescent , Child , Humans , Bone Neoplasms/genetics , Cell Proliferation , MicroRNAs/genetics , Mixed Function Oxygenases , Osteosarcoma/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger , RNA, Long Noncoding/metabolism
15.
Biomed Pharmacother ; 165: 115086, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418978

ABSTRACT

Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Iron Overload , Animals , Mice , Diabetic Nephropathies/drug therapy , Cystine
17.
BMC Public Health ; 23(1): 836, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158857

ABSTRACT

BACKGROUND: The true incidence of acute gastrointestinal illness in China is underrecognized by surveillance systems. The aims of this study were to estimate the incidence and prevalence of self-reported AGI in the community of China, and to investigate sociodemographic and epidemiological determinants of AGI. METHODS: We conducted a 12-months cross-sectional population-based survey in eight provinces of China during 2014-2015. The survey determined the prevalence and incidence of acute gastrointestinal illness (AGI) in the total permanent resident population in China according to the census of the population in 2010. The random multilevel population sample was stratified by geographic, population, and socioeconomic status. We used a recommended case definition of AGI, with diarrhea (three loose or watery stools) and/or any vomiting in a four-week recall. A face-to-face survey was conducted by selecting the member in the household with the most recent birthday. RESULTS: Among 56,704 sampled individuals, 948 (1,134 person-time) fulfilled the case definition; 98.5% reported diarrhea. This corresponds to 2.3% (95% CI:1.9%-2.8%) of an overall standardized four-week prevalence and 0.3 (95% CI: 0.23-0.34) episodes per person-year of annual adjusted incidence rate. There was no significant difference between males and females. The incidence rates were higher among urban residents, and in the spring and summer. In the whole study period, 50% of the cases sought medical care, of which 3.9% were hospitalized and 14.3% provided a biological sample for laboratory identification of the causative agent. Children aged 0-4 and young adults aged 15-24, people living in rural areas and people who traveled frequently had higher prevalence of AGI. CONCLUSION: Results showed that AGI represents a substantial burden in China, and will contribute to the estimation of the global burden of AGI. Complemented with data on the etiologies of AGI, these estimates will form the basis to estimate the burden of foodborne diseases in China.


Subject(s)
Diarrhea , Vomiting , Child , Female , Male , Young Adult , Humans , Cross-Sectional Studies , Prevalence , Diarrhea/epidemiology , China/epidemiology
19.
Cancers (Basel) ; 15(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37173953

ABSTRACT

Non-muscle-invasive bladder cancer (NMIBC) is a common tumor of the urinary system. Given its high rates of recurrence, progression, and drug resistance, NMIBC seriously affects the quality of life and limits the survival time of patients. Pirarubicin (THP) is a bladder infusion chemotherapy drug recommended by the guidelines for NMIBC. Although the widespread use of THP reduces the recurrence rate of NMIBC, 10-50% of patients still suffer from tumor recurrence, which is closely related to tumor resistance to chemotherapy drugs. This study was performed to screen the critical genes causing THP resistance in bladder cancer cell lines by using the CRISPR/dCas9-SAM system. Thus, AKR1C1 was screened. Results showed that the high expression of AKR1C1 could enhance the drug resistance of bladder cancer to THP both in vivo and in vitro. This gene could reduce the levels of 4-hydroxynonenal and reactive oxygen species (ROS) and resist THP-induced apoptosis. However, AKR1C1 did not affect the proliferation, invasion, or migration of the bladder cancer cells. Aspirin, which is an AKR1C1 inhibitor, could help reduce the drug resistance caused by AKR1C1. After receiving THP treatment, the bladder cancer cell lines could upregulate the expression of the AKR1C1 gene through the ROS/KEAP1/NRF2 pathway, leading to resistance to THP treatment. Using tempol, which is an inhibitor of ROS, could prevent the upregulation of AKR1C1 expression.

20.
Sci Rep ; 13(1): 7930, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193824

ABSTRACT

Assessing the health of coastal ecosystems is crucial for maintaining ecological balance. One significant indicator of water eutrophication is the distribution of chlorophyll-a (Chl-a), which makes obtaining a complete three-dimensional spatial distribution of Chl-a essential for assessment. This study utilized the linear radial basis function (RBF-Linear) method to obtain a comprehensive and reasonable spatial distribution of Chl-a. The method was applied to obtain the three-dimensional spatial field of Chl-a concentration in the Bohai Sea in March, May, August, and October from 2016 to 2018. The distribution pattern of Chl-a concentration in the Bohai Sea displayed characteristic spatial and temporal variations. Spatially, high Chl-a concentration was most concentrated in coastal waters, particularly in estuaries and mariculture areas. Temporally, there were two peaks in March and August. The total Chl-a and areas with high Chl-a concentration in four sub-regions of the Bohai Sea were also calculated to enable a comprehensive assessment of the marine ecological environment. By analyzing the temporal and spatial variation of Chl-a in the Bohai Sea and evaluating the marine ecological environment, we confirmed the feasibility and rationality of RBF-Linear. Our findings have the potential to contribute to improve the accuracy of ecological models and assessment of the satellite products.

SELECTION OF CITATIONS
SEARCH DETAIL
...